
L D-A12i 303 STORAGE REQUIREMENTS FOR FAIR SCHEDULING(U)YAEUv t
NEW HAVEN CT DEPT OF COMPUTER SCIENCE

J FISCHER ET AL. OCT 92 RR-251 N89S±4-82-K 6±54

UNCLASSIFIED FIG 12/1, NL7I *hhhhh

MEOMNE 
N



4W5
11111 1. 1 ~252

u5 L4_ 220

IIIIf I -.~g w
1 1.21411 iq O H~
111W111U

MICROCOPY RESOLUTION TEST CHART

NATIONAL nUFNEMI OF STANDOARDS-963 -A



-" .- .'

L for p ,. '!-:" i " /

8YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

52 11 09 094



STORAGE REQT"REIENTS FOR FAIR SCHEDULING

by

Michael J. Fischer and Michael S. Paterson

Research Report # 251

October, 1982

.1
I.t

w:,li

.. v.



%ECU.r'!Y CLASSIFICATION Of TIS PAGE (Mohe Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

IREPORT 046IMBIR 42 oJVT yeA 3 RECIPIENT'S CATALOG NUMBER

251
4. TITLE (and Sublili) S. TYPE OF RoPrT & PERIOD COVERED

STORAGE REQUIREMENTS FOR FAIR SCHEDULING Technical Report
6. PERPORmING ORG. REPORT NwMBiER

7. AuTmORo(a IS. CONTRACT OR GRANT NUMBERI'o

Michael J. Fischer and Michael S. Paterson ONR: N00014-82-K-0154 and
NSF: MCS-8116678

9. PERFORMING ORGAN~IATIO NAME AND ADDRESS 1AA. PROGR .NMEI T. POJECT TAS

Department of Computer Science/Yale University

Dunham Lab./10 Hillhouse Avenue N 049-456/11-5-81 410
New Haven, Connecticut 06520

11. CON'ROLLING OFFICE NAME AND ADORESS 12. RErPOT DATE

NSF, Washington, D.C. 20550/ Office of Naval October, 1982
Research, 800 N. Quincy, Arlington, VA 22217 13. NUMBER OF PAGES

7
is "O:TORIN0 AGENCY NAME & ADDRESSI dIIferent from Controlllg Offie.) IS SECURITY CLASS. (of tile riper)

Office of Naval Research Unclassified
800 N. Quincy
Arlington, VA 22217 sa. DISC LICATIOW DOwNGRADING

ATTN: Dr. R.B. Graftbn
16. DISTRIBUTION STATEMENT (of Chi& Rel0 )

Approved for public release; distributed unlimited.

17. DISTRIBUTION STATEMENT (of the aboafef macred ifn Bleak 20. If tfernt *um Roe")

1S. SUPPLMLENTARY NOTES

it. KEY WORDS (ConotAue an reverse side f neoaaew and idenlb' by hle,• aumber)

Fair scheduling, analysis of algorithms, storage bounds, parallel computatioi

20 ABSTRACT (Contie an Po eras* o It 0 n9* avaet. ean11f 0 mdenfy by Slk nuinetr)

"* A scheduler is strongly fair if each process which requests service
infinitely often is served infinitely often, and it is weakly fair if
each process which requests service all but finitely often is served
infinitely often. We show that any strongly fair scheduling algorithm
for n processes requires at least n! storage states (i.e. space proportional

4to n log n). Similarly, any weakly fair scheduling algorithm requires
at least n storage states. Both bounds are optimal. .. ,

DD , 1473 DITION DOP I OV *S1 OSOL9 /
S/M 0102.LT1I,d4601 . .. .. /SEC URlIT GLAMl liPAtSlOi OF

r 
TrNIS PASSr (Sin DO* aBm

4 .. - ' "ma m n* - nunlm ,m,, ~ N '- " " * '. .



C

Storage Requirements for Fair Scheduling*

Michael J. Fischer
Yale University

New Haven, Connecticut I,-' i

and \ ,
P2

Michael S. Paterson.
University of Warwick /

Coventry, England

Manuscript Date
August 1982

Report Date
October 1982

Keywords: Fair scheduling, analysis of algorithms. storage bounds, parallel computation

*This work was supported in part by the Office of Naval Research under Contract N00014-82-
K-0154, and by the National Science Foundation under Grant MCS-8116678.

U



Page I

1. Introduction

In 13]. Park discusses notions of strong and weak fairness in the execution of guarded

iterations. These concerns are also considered in [1] and [2]. We show that any "strongly fair"

scheduling algorithm for n processes requires at least n! storage states (i.e. space proportional to

n log n). Similarly, any "weakly fair" scheduling algorithm requires at least n storage states.

Both bounds are optimal.

For our present purposes we may define a scheduler as a transducer A with an input alphabet

of symbols corresponding to the non-empty subsets of {1, ..., n} and output alphabet 1. n}.

It has the property that for each symbol input the generated output symbol is an element of the

corresponding subset. We may regard each input symbol as requests for service from some subset

of n processes and the output given by A as the scheduler's choice of which one of these to serve.

We consider infinite runs of such a scheduler.

A scheduler is

1. stron l fair if each process which requests service infinitely often is served

infinitely often, and

2. weakly fair if each process which requests service all but finitely often is served

infinitely often.

Thus at any time in a strongly (weakly) fair schedule any process will eventually be served if

it requests service infinitely (continuously) from that time. Park's example of a strong schedulei

in [P] keeps the processes in a queue. At each step it serves that. requesting process which is

earliest in the queue and then sends this process to the back of the queue. That this provides

strongly fair scheduling is easy to see since when any process is unsuccessful in its request it

advances one position in the queue. Park expresses disquiet at the implementation overheads for

such a scheduler.

By contrast, he shows a simple economical weakly fair scheduler. A counter with values in

(1, ..., n) is maintained. At each step the counter is incremented modulo n until it reaches the

number of a process requesting service. This process is then served.

We shall show that both of the schedulers given by Park are optimal in their use of storage

space.



Page 2

2. Main Results

Theorem I. Any strongly fair scheduler for n processes has at least n! states.

Proof. For each i, let Pi be the set of scheduler states with the property that the next time

process i requests service it will indeed be served.

Lemma 1. For i 7 j, Pi n P, 0.

Proof. An immediate request for service by processes i and j would be an irreconcilable
conflict for any state in Pi n P. 0

Lemma 2. For all i, Pi 7 0.

Proof. Suppose Pi = " Since the initial state is not in Pi, there is some sequence wI of
inputs ending in a request from process i such that process i is not served during w1. Since the

resulting state is also not in Pi, the same reasoning produces a continuation w2 with the same

property. In this way we can show the existence of an infinite sequence of inputs w1 .w2*w3*... in

which i requests service infinitely often but is never served. This contradicts strong fairness. 0
Lemma 3. The set of states Pi is closed under the transitions effected by i-free inputs.

Proof. Immediate from the definition of Pi. 0

The proof of Theorem I now proceeds by induction on n. The result is trivial for n - 1. Let

us suppose the result holds for n-i processes and consider the case of n processes.

With Lemma 2 in mind, consider any &I C Pi. With si as an initial state and allowing only

i-free inputs, we find that we have a strongly fair scheduler for (1, ..., a) - {i}. This follows

from the strong fairness of the original scheduler. By the inductive hypothesis this strongly fair

(n - 1)-scheduler uses at least (n - 1)! states, and by Lemma 3 all these states are in Pi. Hence

1Pi1 -: (n - 1)!. Since this inequality holds for each i, we have, using Lemma 1, that the original
scheduler has at least n! states. 0

Thus Park's strongly fair scheduler is optimal in its storage requirement. Indeed the

naturalness of his queuing structure is supported by an analysis of the proof technique above. In
a natural way we can associate with every permutation of the processes a disjoint non-empty

subset of the scheduler states.

We close with a minor result, analogous to Theorem I.

Theorem UI. Any weakly fair scheduler for n processes has at least a states.



Page 3

Proof. Consider the (constant) input sequence in which each process requests service at

every step. If the scheduler has fewer than n states, its resulting ultimately periodic behaviour

has period less than n and so fails to serve some processor. 0

Acknowledgement
We are grateful to David Park for introducing us to this problem.

References

[1] K. R. Apt and E.-R. Olderog. Proof rules dealing with fairness. Bericht Nr. 8104, Institut
fiir Informatik u. Praktische Mathematik, Kiel University (1981).

[21 D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: the ethics of
concurrent termination. In Automata, Languages and Programming, S. Even and
0. Kariv, eds.. Lecture Notes in Computer Science Vol. 115, Springer-Verlag, 1981,
264-277.

[3] D. Park. A predicate transformer for weak fair iteration. Proc. Sixth IBM Symp. on
Mathematical Foundactions of Computer Science, IBM Japan (1981), 257-275.



DISTRIBUTION LIST

Office of Naval Research Contract N00014-82-K-0154
Michael J. Fischer, Principal Investigator

Defense Technical Information Center Naval Ocean Systems Center
Building 5, Cameron Station Advanced Software Technology Division
Alexandria, VA 22314 Code 5200
(12 copies) San Diego, CA 92152

(1 copy)
Office of Naval Research
800 North Qi._incy Street Mr. E.H. Gleissner
Arlington, VA 22217 Naval Ship Research and Development Center

Computation and Mathematics Department
Dr. R.B. Grafton, Scientific Bethesda, HD 20084
Officer (1 copy) (1 copy)
Information Systems Program (437)
(2 copies) Captain Grace M. Bopper (008)
Code 200 (1 copy) Naval Data Automation Command
Code 455 (1 copy) Washington Navy Yard
Code 458 (1 copy) Building 166

Washington, D.C. 20374
Office of Naval Research (1 copy)
Branch Office, Pasadena
1030 East Green Street Defense Advance Research Projects Agency
Pasadena, CA 91106 ATTN: Program Management/MIS
(1 copy) 1400 Wilson Boulevard

Arlington, VA 22209
Naval Research Laboratory (3 copies)
Technical Information Division
Code 2627 Professor Michael S. Paterson
Washington, D.C. 20375 Department of Computer Science
(6 copies) University of Warwick

C6ventry, Warwickshire CV4 7 AL
Office of Naval Research England
-Resident Representative (1 copy)
715 Broadway, 5th floor
Neu York, N.Y. 20003
(1 copy)

Dr. A.L. Slafkosky
Scientific Advisor
Comandant of the Marine Corps
Code RD-1
Washington, D.C. 20380
(1 copy)


